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Abstract

Statistical shape modeling (SSM) is an enabling tool in med-
ical image analysis as it allows for population-based quan-
titative analysis. The traditional pipeline for landmark-based
SSM from images requires painstaking and cost-prohibitive
steps. My thesis aims to leverage probabilistic deep learning
frameworks to streamline the adoption of SSM in biomedical
research and practice. The expected outcomes of this work
will be new frameworks for SSM that (1) provide reliable and
calibrated uncertainty quantification, (2) are effective given
limited or sparsely annotated/incomplete data, and (3) can
make predictions from incomplete 4D spatiotemporal data.
These efforts will reduce required costs and manual labor for
anatomical SSM, helping SSM become a more viable clinical
tool and advancing medical practice.

Overview
Over the last decade, deep learning approaches to shape
modeling from images have proven useful in diverse ap-
plications. Statistical shape analysis is particularly benefi-
cial in medical studies, as it allows for comparing anatomy
against population-based morphological characteristics, po-
tentially aiding in pathology detection and disease diagno-
sis. Computational methods allow for optimizing SSM in the
form of dense sets of landmarks or correspondence points,
called point distribution models (PDMs) (Cates, Elhabian,
and Whitaker 2017). However, this traditional pipeline of
SSM is time-consuming and entails expert-driven manual
steps such as anatomy segmentation, alignment, and opti-
mization parameter tuning. These burdens have prevented
SSM from becoming a staple of medical research.

Recently, deep networks have been used to alleviate this
tedious workflow by predicting PDMs directly from unseg-
mented 3D images. If we could safely use deep learning
to accurately predict SSMs from raw medical scans, costs
and manual labor required would decrease, making SSM a
more usable clinical tool. This would accelerate biomedical
research and result in more accurate and accessible diagno-
sis and pathology detection for patients. Current deep learn-
ing solutions are lacking in three ways. First, they produce
over-confident estimates and lack the necessary safeguard
of well-calibrated uncertainty quantification. Second, they
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require ample annotated medical imaging data for training.
Third, there is no solution for predicting SSM from sparse
4D spatiotemporal data. I plan to address these gaps in the
current literature via three research aims.

Aim 1 - Uncertainty Quantification
I aim to predict SSM from 3D images with estimates of
uncertainty that are demonstratively reliable and well-
calibrated, providing the necessary safeguard for us-
ing SSM in a clinical setting. A drawback of deep learn-
ing approaches is that they can produce overconfident esti-
mates that cannot be blindly assumed to be accurate. Such
estimates can have dangerous consequences in sensitive
decision-making tasks such as clinical evaluations. Quanti-
fying what the model does not know via uncertainty mea-
sures is necessary to determine the trustworthiness of model
output to prevent unsafe predictions.

DeepSSM (Bhalodia et al. 2021) is a deep learning frame-
work that entails performing Principal Component Anal-
ysis (PCA) on the correspondence points to obtain low-
dimensional shape descriptors. This serves as a prior on the
convolutional network and allows for population-driven data
augmentation. In my previous work, Uncertain-DeepSSM
(Adams, Bhalodia, and Elhabian 2020), I extended this
framework to predict data-dependent aleatoric uncertainty
(by adapting the network to predict intrinsic input variance)
and model-dependent epistemic uncertainty (via a Monte
Carlo dropout sampling for approximate variational infer-
ence). This approach relies on PCA to impose a shape prior,
introducing a linearity assumption that could taint uncer-
tainty quantification. I addressed this shortcoming via a vari-
ational information bottleneck formulation (VIB-DeepSSM)
that relaxes the linearity assumption that could be marring
uncertainty predictions with off-subspace error (Adams and
Elhabian 2022). This formulation provided more accurate
aleatoric uncertainty measures and generalizes better under
a limited training budget.

In my future work, I will adapt the VIB approach to
predict epistemic uncertainty and comprehensively com-
pare uncertainty quantification methods, as many existing
Bayesian formulations fail to report quantitatively on the
calibration of predicted uncertainty. My efforts toward for-
malizing how best to quantify the quality of uncertainty
measures will be relevant beyond the task of SSM.



Aim 2 - Data Scarcity
I will alleviate the burdensome requirement of a large
annotated training set, increasing the potential for med-
ical applications where data is limited. Another well-
known drawback of deep learning frameworks is that train-
ing requires ample annotated data that matches the infer-
ence domain. Data scarcity is a crucial problem regarding
volumetric medical imaging. It is often difficult to access a
large cohort of scans of given anatomy, especially given an
uncommon disease or pathology. Segmented scans are even
more scarce as they require time and domain expertise.

I will investigate two research directions to address data
scarcity: model-based data augmentation and probabilistic
transfer learning. DeepSSM presented a statistic-preserving
data augmentation method that entails sampling from a PCA
subspace. In Uncertain-DeepSSM, I enhanced this approach
by using non-parametric kernel density estimation to fit
the subspace, providing a more accurate representation of
complex, nonlinear data. In either case, this augmentation
technique imposes a linear assumption on the data by pre-
projecting data on a linear subspace using PCA. To relax this
restrictive assumption, I aim to explore techniques such as
regularized adversarial training and few-shot learning. Data
augmentation could be integrated into the training process
to reduce workflow complexity and introduce challenging
examples to the primary learning task. I will also explore
the issue of data scarcity via Bayesian learning approaches
that entail transfer learning, such as the Deep Weight Prior
(Atanov et al. 2019). These approaches are fruitful to ex-
plore as they make deep models more robust to limited data
and naturally allow for epistemic uncertainty quantification.

Aim 3 - Sparse 4D SSM
I aim to predict SSM from 4D spatiotemporal data with
missing time points, providing the opportunity for dy-
namic and longitudinal research studies. Many clinical
studies involve spatial and temporal information, for exam-
ple, evaluating dynamic shape over an organ cycle or analyz-
ing longitudinal changes to anatomy pre and post-surgery.
While deep models that predict shape from spatiotempo-
ral data have been explored, such as 4D segmentation from
video, to the best of my knowledge there is no such model
that predicts SSM from unsegmented incomplete 4D data.

As a preliminary step toward this goal, I formalized a
novel SSM optimization scheme that produces landmarks
that are in correspondence both across the population (inter-
subject) and across time-series (intra-subject) (Adams et al.
2022). This workflow still requires the burdensome steps
such as segmentation, but it provides a data-driven solution
to spatiotemporal SSM. While the optimization objective
disentangles subject and time correspondence, it does not
fully capture their interaction as a time-sequence generative
modeling approach would. In my future work, I will inte-
grate such a generative model into the optimization scheme
to inform landmark position updates. This improvement will
additionally allow for inferring or imputing missing time
points. By allowing for the use of incomplete sequences,
fewer scans will be necessary, and partially corrupted data

will be usable, further reducing the required time and cost.
This work will provide a technique for creating training

data and the theoretical foundation to explore generative
deep learning approaches. Progress has been made in impu-
tation via preprocessing with convolution-recurrent autoen-
coders and generative adversarial networks, but such tech-
niques have not been applied to shape modeling. My long-
term goal is to create an end-to-end 4D model that performs
imputation using a latent representation when required.

Ongoing and Future Work
I have made progress toward all three aims, and I have a
plan to complete the remaining work. In Fall 2022, I will
improve the optimization approach to spatiotemporal SSM
that I introduced in (?), allowing for sparse input data. This
work will serve as a baseline for deep generative methods.
In Spring 2023, I will complete the comparison of my pro-
posed uncertainty quantification techniques and other ex-
isting state-of-the-art Bayesian methods in predicting SSM
from images. In tandem, I will continue grappling with data
scarcity, as it is linked to probabilistic approaches. In my
final year, 2024, I will tie all this work together by explor-
ing probabilistic deep learning solutions for predicting spa-
tiotemporal SSM directly from sparse sequences of images.

Throughout my work, I will continue to externally val-
idate the efficacy of my proposed methods in downstream
medical tasks, demonstrating the value of accessible SSM.
The collaborators I have in orthopedics, cardiac, and neuro-
science research at the University of Utah provide me the
potential to test on diverse datasets and tasks. I will further
promote progress in AI research at large by providing open-
source access to my methods via a user-friendly software in-
terface. Upon successfully completing my research, the vi-
ability of using SSM in clinical research and onsite tools
would improve, potentially impacting patient quality of life.
Innovation in these directions will additionally benefit nu-
merous other critical computer vision applications.
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