
Multimodal Deep Generative Models for
Remote Medical Applications

In the spirit of the 28th AAAI Doctoral Consortium theme, I
am pleased to submit my thesis proposal which unifies sev-
eral fields in AI - multimodal machine learning, Generative
Adversarial Networks (GAN), affective computing, multi-
spectral imagery, image registration and alignment, edge
computing, and Federated Learning.

Introduction
Telemedicine experienced a renaissance during the Covid
pandemic. However, many patients and providers are still
constrained to the facets of a simple web-meeting experi-
ence, offering few personalized analytics. We speculate that
one reason for the lack of innovation is the restriction of on-
board computer and smartphone sensors. In particular, the
RGB camera is limited to the visible spectra. If telemedicine
applications could take advantage of signals residing outside
of this band, for example the long-wave infrared (LWIR)
spectrum (8 - 14um), greater information about a patient’s
state of health could be obtained during a virtual consul-
tation. Medical research in the well-studied field of ther-
mal physiology provides this exact framework (Buddharaju
et al. 2007; Pavlidis et al. 2007). Since LWIR detects heat
emitted from the surface of the facial skin in complete dark-
ness, signs of inflammation and anxiety can be visualized in
a contact-free manner, all correlated to gold standard vital
measures. Such information is hidden in the visible spectra,
preventing physicians from assessing important clues about
patient health. Unfortunately, the universal installation of
LWIR sensors onto existing computers and smartphones is
not feasible for numerous technical and economic reasons.
Motivated by these observations, my thesis contributes
new algorithms such as conditional Generative Adver-
sarial Networks (cGAN) and related deep learning meth-
ods, so that AI can stand in as a proxy for thermal hard-
ware.By taking an RGB image normally available on com-
puter systems and translating it into a thermal image, these
signs of patient stress and health can be visualized without
needing a thermal sensor. My research is divided into three
phases, described below: 1) Phase I - Visible-to-Thermal Fa-
cial GAN, 2) Phase II - Multimodal Data and Latent Factors,
3) Phase III - Multimodal Generative Capacity in FL.

Phase I - Visible-to-Thermal Facial GAN
Phase I asks, “What is the feasibility of translating visible
faces into the thermal modality, and what are the associ-
ated technical challenges?” Before starting, I completed an
overview of thermal AI limitations in facial emotion recog-
nition (FER), in order to study the ethical impacts and biases
in existing thermal datasets and studies (Ordun et al. 2020b).
This study armed me with greater knowledge towards eth-
ical impacts as this research proceeds into Phase III. Al-
though thermal-to-visible (TV) translation has been applied
successfully for person re-identification in law enforcement
(Mallat et al. 2019; Zhang et al. 2019, 2018), translating
in the opposite direction of visible-to-thermal (VT) is more
challenging since it requires mapping high frequency edges
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Figure 1: Sample thermal faces generated with my approach,
TFC-GAN.

to lower frequency, smooth thermal textures. Further, the
subject identity can be lost, in addition to poor geometric
alignment of the face. To address these challenges, I com-
pleted the development of the Facial-Visible-to-Thermal
GAN (favtGAN) (Ordun et al. 2021), proving that auxiliary
sensor labels can improve generated thermal face quality,
by conditioning the generator. I extended favtGAN into the
Thermal Face Contrastive GAN (TFC-GAN) in order to im-
prove thermal image quality, resolution, and perceptual clar-
ity. TFC-GAN incorporates contrastive losses for regional
patch and temperature differentiation, with a relativistic loss
and anti-aliasing to promote shift invariance to the input
visible image. It achieves up to an 81.15% FID improve-
ment on highly diverse, challenging visible-thermal facial
datasets. I am currently incorporating TFC-GAN in an end-
to-end pipeline to generate well-aligned thermal faces. The
goal is to resolve severely misaligned facial pairs, a prob-
lem that plagues all VT/TV datasets since pre-paired sets are
not available. Three contributions include: i) thermal-visible
image alignment with affine rotation, facial landmarks, and
feature descriptors, ii) registration via spatial transformation
networks (Jaderberg, et al. 2015) to automatically learn a
deformation grid, and iii) TFC-GAN with a Fourier domain
loss module. Lastly, I am exploring denoising diffusion im-
plicit models (DDIMs) (Song et al. 2020), popularized by
the recent text-to-image Imagen and Stable Diffusion mod-
els, as an alternative thermal generation strategy as opposed
to GAN. Phase I is 75% complete, with the aforementioned
two works (i.e. pipeline, diffusion).

Phase II - Multimodal Data and Latent Factors
Phase II asks, “When applied to a real disease condition,
such as cancer chronic pain, how does auxiliary informa-
tion in the form of multimodal inputs such as facial land-
marks, audio, and pain scores impact the translation of ther-
mal faces?” Existing pain instruments fail to accurately re-



port chronic pain experienced by cancer patients, making it
difficult for physicians to manage pain during the course of
treatment. To this extent, I developed deep learning models
for chronic cancer pain detection, using data from an ongo-
ing clinical trial at the National Institutes of Health (NIH)
entitled Intelligent Sight & Sound (ISS) across 29 patients
(Ordun, Cha et al. 2022). This dataset is the first of its kind
and consists of multimodal extracts drawn from patient nar-
rative videos - facial landmarks, audio statistics, audio spec-
trograms, text transcripts, and self-reported pain scores. It
varies markedly from existing pain datasets (Lucey et al.
2011) since chronic pain is not acute (e.g. stimulated from
muscular contractions) and thereby patients display subdued
and hard-to-detect facial emotions. As mentioned in the In-
troduction, thermal imagery offers valuable insights that are
invisible on RGB images such as signs of inflammation and
stress - common symptoms of cancer chronic pain patients.
To this extent, the clinical trial has been collecting thermal
video during in-clinic patient visits. In Phase I with the favt-
GAN, I used auxiliary inputs in the form of thermal sen-
sor class labels to improve the translation of thermal faces.
Similarly, I intend to generate thermal faces using auxiliary
inputs of facial landmarks, audio, text, and pain scores to
not only improve the perceptual resolution but also to iden-
tify which features are most impactful in the generation of
thermal specific regions. This is important since temperature
on the eyes, nose, cheeks, and forehead each carry different
physiological meaning. Phase II is 50% complete, where fu-
ture work mentioned above (i.e. TFC-GAN, latent factors)
will incorporate data from over 50 subjects.

Phase III - Multimodal Generative Capacity in FL

Phase III asks “What are the challenges in generative ca-
pacity in a Federated Learning (FL) model when deploy-
ing our multimodal translation GAN, across homo/hetero-
geneous devices?” A loose federation of client devices that
can collaboratively learn a central model while preserving
the privacy of local patient health data, makes FL (Kairouz
et al. 2021) a promising option to explore for telemedicine.
Recently, a handful of works have explored how to fed-
erate vanilla and image-translation GANs (Li et al. 2022;
Xie et al. 2022). Generative capacity, or the ability to out-
put high resolution and diverse images, is a shared problem
that is so far being investigated through different weighting
mechanisms and distribution architectures for the generator
and discriminator. However, these works use datasets like
MNIST which are far simpler than local distributions em-
anating from human faces of varying diversity, pose, and
angle. This, coupled with the task of translating across op-
tical spectra will undoubtedly reveal weaknesses in the ex-
isting approaches to generative capacity. As a result, Phase
III intends to offer new innovations for these sets of chal-
lenges and will develop experiments across homogeneous
(e.g. three NVIDIA Xaviers), and heterogenous edge de-
vices (i.e. NVIDIA Nano, TX2, Xavier), serving as the local
clients. Phase III is the least developed and will require the
most research effort.

Table 1: Progress Summary as of Sep. 2, 2022. As first author of
all completed works, I was responsible for writing the code, math,
and paper, to include the entire AI pipeline (proc, algo, train, eval).
Advisors provided strategy and recommendations. Co-authors of
the NIH paper (Ordun, Cha et al. 2022) provided clinical proto-
col, IRB approval, ethical, and medical subject-matter expertise
†(Ordun et al. 2020a,b, 2021) + TFC-GAN in review. ‡(Ordun, Cha
et al. 2022) .

Phase Works Works Est. %
Completed In-Progress Remaining

I - Visible-to-Thermal Facial GAN 4† 2 25%
II - Multimodal Data & Latent Factors 1‡ 2 50%
III - Multimodal Generative Capacity in FL 0 0 100%
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